William P. Ruzzo, PE, LLC 6641 West Hamilton Drive, Lakewood, Colorado 80227 (303) 985-1091 (303) 989-6561 fax bill.ruzzo@comcast.net

Memorandum

To: Rick Goncalves, P.E., TAC Chairman

CC: Dorothy Eisenbraun, P.E., AMEC

From: William P. Ruzzo, P.E.

Date: November 18, 2011, Revised December 2, 2011

Re: West Boat Ramp Parking Lot Improvements – Water Quality Analysis

Presented in this memorandum is an evaluation of water quality benefits associated with alternative plans to reduce water quality impacts from the West Boat Ramp Parking lot located in Cherry Creek State Park.

AMEC was retained by the Authority to prepare a PRF water quality management plan for the West Boat Ramp Parking Lot (Project). The management plan includes, among other tasks, identification and investigation of alternatives to reduce water quality impacts to Cherry Creek reservoir from storm runoff. AMEC has identified four alternative plans¹ to address water quality impacts from the Project area and prepared conceptual level plans and a cost estimate for each alternative plan. Each of these alternative plans were then evaluated by the Authority for water quality benefits associated with reduction in total phosphorus (Tp), total suspended sediment (TSS), and oil/grease. The results of the analysis are presented herein.

AMEC presented the recommended plan to the Technical Advisory Committee (TAC) at the December 1, 2011 meeting. The TAC requested that the water quality analysis include the status quo or no-action alternative; therefore this memorandum was revised to include a discussion of this alternative.

APPROACH

Water quality benefits for the Project were calculated based on reduction in annual pollutant loads that are discharged to the Reservoir, namely Tp, TSS, and oil/grease. The hydrologic basis for all alternatives is to capture runoff up to the storm inlet capacity (approximately the 5-year) and either divert runoff to a detention pond or

¹ AMEC November 2011. Alternative Analysis Cherry Creek Reservoir West Boat Ramp Parking Lot Water Quality Improvements. (draft report).

treat the runoff using a proprietary BMP prior to discharging into the Reservoir. To evaluate water quality benefits, calculations were made to determine:

- 1. Annual Tp and TSS loads from the Project area.
- 2. Estimate of the long-term performance in Tp and TSS for each alternative described below:
 - 2.1. Alternative 1-A: Water quality detention with pipe conveyance
 - 2.2. Alternative 1-B: Water quality detention with pipe and swale conveyance
 - 2.3. Alternative 2-A: Proprietary BMP Hydrodynamic Separator
 - 2.4. Alternative 2-B: Proprietary BMP Filtration System
- 3. Calculation of annual Tp and TSS reduction load reduction for each alternative.
- 4. Comparison of the capital and annual costs per pound of Tp and TSS for each alternative.

Because quantification of oil/grease is not available, the ability of each alternative to control oil/grease was qualitatively evaluated relative to other alternatives investigated.

Calculations and data used to perform the analysis are attached to this memorandum.

Annual Tp and TSS Loads.

Determination of annual loads was made using event mean concentrations (EMC) and estimate of mean annual storm runoff from the Project area. EMCs for Tp were obtained from the Authority's watershed model², which were derived specifically for the Cherry Creek watershed. EMC's for TSS were obtained from Table 1-1 in Urban Drainage & Flood Control District (UDFCD³) Volume 3 Manual. Calculation of mean storm runoff volume procedures are also documented in the Authority's watershed model report. Annual Tp and TSS load calculations are provided on Sheet 1/2 in the appendix.

Performance Estimate.

The alternatives represent four different treatment technologies including extended detention basin (EDB), grassed swale, proprietary filter system, and proprietary hydrodynamic system. The primary source for performance of these BMPs can be found in the UDFCD Volume 3 Manual in Table 2-2.

As presented in Table 2-2, BMP performance (i.e.: effluent concentration) is dependent on influent concentration. Therefore, adjustments to the BMP performance (i.e.: effluent concentration) were necessary, since EMC used in this analysis differ from the data set provided in Table 2-2. The adjustment in performance was calculated as the ratio of Table 2-2 effluent to influent

 ² CCBWQA February 2009. Cherry Creek Basin Watershed Phosphorus Model Documentation.
 ³ UDFCD 2010. Urban Storm Drainage Criteria Manual Volume 3, Best Management Practices.

concentration times the EMC used in the Authority's analysis. Calculations of these adjustments are provided in sheet 2/3 of the appendix.

In addition to the performance adjustments, it was also necessary to make assumptions for the ability of the hydrodynamic separator to remove Tp and TSS, due to lack of available data. For the Authority's analysis, the hydrodynamic separator was assumed to remove 10% of the Tp and 75% of TSS, due to its ability to trap fine sediment.

For the proprietary filter system, the performance values listed in Table 2-2 for "media filters" were used to calculate BMP effluent concentrations.

Calculations of annual Tp and TSS load reductions for alternatives 1-A and 1-B are provided on Sheet 3/4 and calculations for alternatives 2-A and 2-B are provided on Sheet 4/-.

No-Action Alternative. The no-action alternative assumes that no improvements will be made to reduce the discharge of pollutants to Cherry Creek Reservoir. This means that phosphorus, sediment, and oil and grease would continue to drain into the reservoir during storm events.

Pollutants have a negative impact on reservoir water quality, therefore, beneficial uses (i.e.: swimming, boating, fishing, etc.) can be impaired which in turn has a negative impact on the economic value of the reservoir. Economic analysis of Cherry Creek Reservoir has estimated the present value may be over \$1 billion⁴. However, no attempt has been made to quantify or otherwise estimate the economic impact of the no-action alternative associated with park uses for recreation.

The financial impact of a no-action alternative is related, at least in part, to the cost to prevent or minimize the discharge of pollutants. The Authority evaluated 27 individual projects on its long term capital improvement program (CIP) list to determine cost per pound of phosphorus that is prevented from being discharged to the reservoir by construction of the project. The cost per pound ranges from \$100 to over \$2,500 per pound with an annual average around \$1,100. Data regarding cost of preventing sediment from being discharge to the reservoir is not available and no estimate was made for this water quality analysis.

RESULTS

Presented in the following table is a summary of alternative costs, reduction in annual Tp and TSS loads, and a qualitative assessment of their ability to reduce oil and grease from being discharged to the Reservoir.

⁴ Stratus Consulting August 2, 2000. *Preliminary Evaluation of Recreational Value Provided by Cherry Creek State Park.*

Altern. Description		Cost		Phosphorus Treatment		Sediment Treatment		Oil and Grease	
	-	Capital	U&M	Annuai	(11	• /II	(11	• //	
		(usa)	(usd)	(usa)	(IDS)	\$/ID	(IDS)	\$/ID	
	No-Action	\$-	\$-	\$ 1,100	2.6	\$ 2,854	1,796		
1-A	EDB w/Pipe Diversion	\$ 209,880	\$ 1,000	\$ 12,245	1.4	\$ 9,050	1,308	\$9	Poor to good w/baffle system at inlet
1-B	EDB w/Pipe & Swale Diversion	\$ 140,863	\$ 1,500	\$ 9,048	1.4	\$ 6,680	1,635	\$6	Poor to good w/baffle system at inlet
2-A	Proprietary Hydrodynamic Separator	\$ 180,327	\$ 22,000	\$ 31,663	0.3	\$ 122,050	1,347	\$ 24	Good
2-B	Proprietary Filter System	\$ 269,418	\$ 27,000	\$ 28,448	1.2	\$ 24,370	1,469	\$ 19	Good to Very Good

Summary of Water Quality Benefits for each Alternative

Note that for the "no-action" alternative, the average annual cost of phosphorus that is prevented from being discharged to the reservoir (i.e.: \$1,100) is believed to be a conservatively low value since it does not include economic impacts to recreational uses of the reservoir.

Based on this comparison, Alternate 1-B is the highest ranked alternative because:

- 1. It has the lowest annual cost
- 2. It has the lowest annual cost per pound of phosphorus and sediment removed.

CALCULATION APPENDIX

CHERRY CREEK BASIN WATER QUALITY AUTHORITY WEST BOAT RAMP PARKING LOT ESTIMATE OF ANNUAL POLLUTANT LOADS

REFERENCE

Sheet 1/2

- 1 EMC's for Total P from CCBWQA Feb 2009. Cherry Creek Basin Watershed Phosphorus Model Documentation
- 2 EMC's for TSS and BMP effluent EMC's from: UDFCD 2010. Urban Storm Drainage Crieria Manual Volume 3, Table 1-2 & 2-2

EVENT MEAN CONCENTRATIONS:

Land Use	Total P, (mg/l)	TSS, (mg/l)
	EMC	EMC
Industrial	0.33	399
Commercial	0.33	225
Residential	0.49	240
Undeveloped.	0.28	400

MEAN PRECIPITATION

Mean storm =	0.43	inches
Avg # of Runoff producting events per year =	32	storms
Mean annual =	13.8	inches

MEAN ANNUAL POLLUTANT LOAD POTENTIAL

Parking Lot Imp Area =	2.85	Ac	(paved area only)
% I =	100%		
2-yr Runoff Coeff =	0.90		
Annual Runoff Vol =	2.93	AF	
EMC (phos) =	0.33	mg/l	
EMC (TSS) =	225	mg/l	
Total Load (phos) =	2.6	lbs	
Total Load (TSS) =	1796	lbs	

CHERRY CREEK BASIN WATER QUALITY AUTHORITY WEST BOAT RAMP PARKING LOT ESTIMATE OF BMP PERFORMANCE

REFERENCE

Sheet 2/3

- EMC's for Total P from CCBWQA Feb 2009. Cherry
- Creek Basin Watershed Phosphorus Model Documentation 2
 - EMC's for TSS and BMP effluent EMC's from: UDFCD 2010.
 - Urban Storm Drainage Crieria Manual Volume 3, Table 1-2 & 2-2

EXTENDED DETENTION BASIN/WET POND

1

- 1. The existing boat storage pond will retain some runoff and infiltrate into the ground or evaporate. Therefore, use "retention pond" EMC in Table 2-2 for influent and effluent
- 2. Use UDFCD Table 2-2 to estimate effluent (discharge) EMC, but adjust effluent EMC based on ratio of effluent/influent concentrations. similar to % reduction

Table 2-2 EMC Values					
Tot	tal Phosphor	us	Total \$	Suspended 8	Solids
Influent	Effluent	Ratio	Influent	Effluent	Ratio
(mg/l)	(mg/l)	(E/I)	(mg/l)	(mg/l)	(E/I)
0.23	0.11	0.48	44.5	12.1	0.27

GRASSED SWALE

1. Use UDFCD Table 2-2 to estimate effluent (discharge) EMC, but adjust effluent EMC based on ratio of effluent/influent concentrations, similar to % reduction

Table 2-2 EMC Values					
tal Phosphor	us	Total Suspended Solids			
Effluent	Ratio	Influent	Effluent	Ratio	
(mg/l)	(E/I)*	(mg/l)	(mg/l)	(E/I)	
0.23	1.0	54.5	18	0.33	
	al Phosphor Effluent (mg/l) 0.23	Table 2-2 I al Phosphorus Effluent Ratio (mg/l) (E/l)* 0.23 1.0	Table 2-2 EMC Values tal Phosphorus Total 3 Effluent Ratio Influent (mg/l) (E/l)* (mg/l) 0.23 1.0 54.5	Table 2-2 EMC Valuestal PhosphorusTotal SuspendedEffluentRatioInfluentEffluent(mg/l)(E/l)*(mg/l)(mg/l)0.231.054.518	

"*" Assume no Total P reduction through grass swale

PROPRIETARY FILTER SYSTEM

- 1. Use UDFCD Table 2-2 to estimate effluent (discharge) EMC, but adjust effluent EMC based on ratio of effluent/influent concentrations, similar to % reduction
- 2. Assume the "media filters" performance is similar to proprietary filter system

Table 2-2 EMC Values					
Tot	al Phosphor	us	Total Suspended Solids		
Influent	Effluent	Ratio	Influent	Effluent	Ratio
(mg/l)	(mg/l)	(E/I)	(mg/l)	(mg/l)	(E/I)
0.2	0.11	0.55	44	8	0.18

PROPRIETARY HYDRODYNAMIC SEPARATOR

- 1. Use UDFCD Table 2-2 to estimate effluent (discharge) EMC, but adjust effluent EMC based on ratio of effluent/influent concentrations, similar to % reduction
- 2. Assume that separator will reduce TP by 10% and TSS by 75%

Table 2-2 EMC Values					
Tot	al Phosphor	us	Total Suspended Solids		
Influent	Effluent	Ratio	Influent	Effluent	Ratio
(mg/l)	(mg/l)	(E/I)	(mg/l)	(mg/l)	(E/I)
n/a	n/a	0.90	n/a	n/a	0.25

CHERRY CREEK BASIN WATER QUALITY AUTHORITY WEST BOAT RAMP PARKING LOT ESTIMATE OF ANNUAL POLLUTANT LOAD REDUCTIONS

REFERENCE

Sheet 3/4

- 1 EMC's for Total P from CCBWQA Feb 2009. *Cherry*
 - Creek Basin Watershed Phosphorus Model Documentation
- 2 EMC's for TSS and BMP effluent EMC's from: UDFCD 2010. Urban Storm Drainage Crieria Manual Volume 3, Table 1-2 & 2-2

LOAD REDUCTION FROM ALTERNATIVE 1-A WATER QUALITY POND W/PIPE

Trib. Area treated EDB =	2.85	Ac	Paved area only
% I =	100%		
2-yr Runoff Coeff =	0.90		
Annual Runoff Vol =	2.93	AF	
Pond Treatment			
Influent EMC (phos) =	0.33	mg/l	
Effluent EMC (phos) =	0.16	mg/l	Sheet 2 for adjustment
Effluent Load (phos) =	1.2	lbs	
Load Reduction =	1.4	lbs	
Influent EMC (TSS) =	225.0	mg/l	
Effluent EMC (TSS) =	61	mg/l	Sheet 2 for adjustment
Effluent Load (TSS) =	488	lbs	
Load Reduction =	1308		
Annual Load (phos) =	2.6	lbs	
Load Reduction (phos) =	1.4	lbs	
Annual Load (TSS) =	1796	lbs	
Load Reduction (TSS) =	1308	lbs	

LOAD REDUCTION FROM ALTERNATIVE 1-B WATER QUALITY POND W/SWALE

Trib. Area treated EDB =	2.85	Ac	Paved area only
% I =	100%		
2-yr Runoff Coeff =	0.90		
Annual Runoff Vol =	2.93	AF	
Swale Treatment			
Influent EMC (phos) =	0.33	mg/l	
Effluent EMC (phos) =	0.33	mg/l	Sheet 2 for adjustment
Effluent Load (phos) =	2.6	lbs	
Load Reduction =	0.0	lbs	
Influent EMC (TSS) =	225.0	mg/l	
Effluent EMC (TSS) =	74	mg/l	Sheet 2 for adjustment
Effluent Load (TSS) =	593	lbs	
Load Reduction =	1203	lbs	
Pond Treatment			
Influent EMC (phos) =	0.33	mg/l	from swale
Effluent EMC (phos) =	0.16	mg/l	Sheet 2 for adjustment
Effluent Load (phos) =	1.2	lbs	
Load Reduction =	1.4	lbs	
Influent EMC (TSS) =	74	mg/l	from swale
Effluent EMC (TSS) =	20	mg/l	Sheet 2 for adjustment
Effluent Load (TSS) =	161	lbs	
Load Reduction =	432	lbs	
Total Treatment			
Load Reduction (phos) =	1.4	lbs	
Load Reduction (TSS) =	1635	lbs	

Sheet 4/-

CHERRY CREEK BASIN WATER QUALITY AUTHORITY WEST BOAT RAMP PARKING LOT ESTIMATE OF ANNUAL POLLUTANT LOAD REDUCTIONS

REFERENCE

1

- EMC's for Total P from CCBWQA Feb 2009. Cherry
- Creek Basin Watershed Phosphorus Model Documentation
- 2 EMC's for TSS and BMP effluent EMC's from: UDFCD 2010. Urban Storm Drainage Crieria Manual Volume 3, Table 1-2 & 2-2

LOAD REDUCTION FROM ALTERNATIVE 2-A HYDRODYNAMIC SEPARATOR

Trib. Area treated EDB =	2.85	Ac	Paved area only
% I =	100%		
2-yr Runoff Coeff =	0.90		
Annual Runoff Vol =	2.93	AF	
Pond Treatment			
Influent EMC (phos) =	0.33	mg/l	
Effluent EMC (phos) =	0.29	mg/l	Sheet 2 for adjustment
Effluent Load (phos) =	2.3	lbs	
Load Reduction =	0.3	lbs	
Influent EMC (TSS) =	225.0	mg/l	
Effluent EMC (TSS) =	56	mg/l	Sheet 2 for adjustment
Effluent Load (TSS) =	449	lbs	
Load Reduction =	1347		
Annual Load (phos) =	2.6	lbs	
Load Reduction (phos) =	0.3	lbs	
Annual Load (TSS) =	1796	lbs	
Load Reduction (TSS) =	1347	lbs	

LOAD REDUCTION FROM ALTERNATIVE 2-B FILTER SYSTEM

Trib. Area treated EDB =	2.85	Ac	Paved area only
% I =	1.00		
2-yr Runoff Coeff =	0.90		
Annual Runoff Vol =	2.93	AF	
Filter System			
Influent EMC (phos) =	0.33	mg/l	
Effluent EMC (phos) =	0.18	mg/l	Sheet 2 for adjustment
Effluent Load (phos) =	1.4	lbs	
Load Reduction =	1.2	lbs	
Influent EMC (TSS) =	225.0	mg/l	
Effluent EMC (TSS) =	41	mg/l	Sheet 2 for adjustment
Effluent Load (TSS) =	327	lbs	
Load Reduction =	1469		
	26	lbo	
Annual Load (phos) =	2.0	IDS	
Load Reduction (phos) =	1.2	lbs	
Annual Load (TSS) =	1796	lbs	
Load Reduction (TSS) =	1469	lbs	

Table 1-2. Event Mean Concentrations (mg/L) of Constituents in Denver Metropolitan Area Runoff

(per DRURP and Phase I Stormwater CDPS Permit Application for Denver, Lakewood and Aurora) (Source: Aurora et al. 1992. *Stormwater NPDES Part 2 Permit Application Joint Appendix* and DRCOG 1983. *Urban Runoff Quality in the Denver Region.*

Constituent	Natural Grassland	Commercial	Residential	Industrial
Total Phosphorus (TP)	0.40	0.42	0.65	0.43
Dissolved or Orthophosphorus (PO ₄)	0.10	0.15	0.22	0.2
Total Nitrogen (TN)	3.4	3.3	3.4	2.7
Total Kjeldahl Nitrogen (TKN)	2.9	2.3	2.7	1.8
Ammonia Nitrogen (NH ₃)	0.1	1.5	0.7	1.2
Nitrate + Nitrite Nitrogen (NO ₃ /NO ₂)	0.50	0.96	0.65	0.91
Lead (Total Recoverable) (Pb)	0.100	0.059	0.053	0.130
Zinc (Total Recoverable) (Zn)	0.10	0.24	0.18	0.52
Copper (Total Recoverable) (Cu)	0.040	0.043	0.029	0.084
Cadmium (Total Recoverable) (Cd)	Not Detected	0.001	Not Detected	0.003
Chemical Oxygen Demand (COD)	72	173	95	232
Total Organic Carbon (TOC)	26	40	72	22-26
Total Suspended Solids (TSS)	400	225	240	399
Total Dissolved Solids (TDS)	678	129	119	58
Biochemical Oxygen Demand (BOD)	4	33	17	29

Table 2-2. BMP Effluent EMCs (Source: International Stormwater BMP Database, August

BMP Selection

				Solic	ds and Nutrients (1	milligrams/liter)				
		Total	Total					Nitrogen, Nitrite		Phosphorus,
BMP Category	Court clano?	Suspended	Dissolved	Nitrogen, Totol	Total Kjeldahl	Nitrogen,	Nitrogen, Nitrate	(NO2) + Nitrate	Phosphorus as	Orthophosphate as
	sample 1 ype	SDIIOC	Solids	1 0 tal	INITIOGEN (I KIN)	Ammonia as IN	*NI 38 (CUNI)	*NI 3B (CUVI)	F, 10tal	ب
Diomotomation	Inflow	44.6	NC	1.46	1.22	0.19	NC	0.30	0.13	0.04
DIOIELEIILIOII		(41.0-33.3, II= 0)	UN A	(1.24-1.03, II= /) 1 15	() 10.01.03, II= () 0.04	(0.10-0.22, II= 0)	UN	(01 = 1,000,000)	(0.12-0.17, n= 12) 0.10	0.01-0.10, II= /)
	Outflow	12.7 (6.8-17.3, n= 6)		1.1 <i>.</i> (0.92-2.98, n= 7)	0.504 (0.60-2.09, n= 8)	0.05-0.38, n= 8)		(0.14-0.29, n=10)	0.08-0.19, n= 12)	0.03-0.33, n=7)
	To flow	52.3	57.5	NC	1.40	0.38	0.44	NC	0.18	0.04
Canon Duffor	MOITUI	(50.0-63.3, n= 14)	(32.0-89.3, n= 12)		(1.15-2.10, n= 13)	(0.23-0.64, n= 10)	(0.42-0.92, n= 13)		(0.09-0.25, n= 14)	(0.03-0.06, n=10)
Urass buller	Outflour	22.3	88.0	NC	1.20	0.25	0.33	NC	0.30	0.10
	Outrow	(15.0-28.3, n= 14)	(73.3-110.0, n=12)		(0.95-1.50, n= 13)	(0.13-0.36, n= 9)	(0.23-0.78, n= 13)		(0.11-0.56, n= 14)	(0.05-0.29, n= 10)
	Inflow	54.5	79.5	NC	1.83	0.06	0.41	0.25	0.22	0.04
	MOTTI	(30.5-76.5, n= 15)	(64.2-100.1, n=12)		(1.40-2.11, n= 12)	(0.02-0.09, n= 4)	(0.23-0.78, n= 12)	(0.19-0.37, n= 4)	(0.13-0.29, n= 15)	(0.03-0.04, n=3)
Urass Swale		18.0	71.0	0.60	1.23	0.05	0.29	0.22	0.23	0.10
	Outriow	(8.9-39.5, n= 19)	(34.9-85.0, n= 10)	(0.55-1.34, n= 6)	(0.41-1.48, n= 16)	(0.03-0.06, n= 8)	(0.21-0.66, n= 15)	(0.18-0.31, n= 8)	(0.19-0.31, n= 19)	(0.08-0.12, n=7)
	To flow.	59.5	88.5	1.05	1.32	0.08	0.45	0.23	0.20	NC
Detention Basin	MOTTU	(17.8-83.8, n= 18)	(85.0-98.8, n= 6)	(1.04-1.25, n= 3)	(0.77-1.70, n= 10)	(0.04-0.10, n= 5)	(0.30-0.90, n= 8)	(0.17-0.50, n= 5)	(0.18-0.30, n= 17)	
(aboveground		22.0	85.0	2.54	1.66	60'0	0.40	0.17	0.20	NC
extenaea aet.)	Ouulow	(11.6-28.5, n= 20)	(54.3-113.5, n= 6)	(1.7-2.69, n= 3)	(0.86-1.95, n= 10)	(0.07-0.10, n= 5)	(0.27-0.85, n= 8)	(0.08-0.43, n= 6)	(0.13-0.26, n= 18)	
	Inflow	44.0	42.0	1.51	1.53	0.34	0.38	0.33	0.20	0.02
Media Filters	MOTTIN	(32.0-75.0, n= 21)	(28.4-59.0, n= 13)	(0.73-1.80, n= 5)	(0.87-2.00, n= 17)	(0.08-1.12, n= 11)	(0.23-0.57, n= 16)	(0.23-0.51, n= 6)	(0.13-0.33, n= 21)	(0.02-0.06, n= 7)
(various types)	Outflour	8.0	55.0	0.63	0.80	0.11	0.66	0.43	0.11	0.02
	Outrow	(5.0-17.0, n=21)	(46.0-62.0, n= 13)	(0.43-1.41, n= 4)	(0.50-1.22, n= 17)	(0.04-0.15, n= 10)	(0.39-0.73, n= 16)	(0.05-1.00, n= 5)	(0.06-0.15, n= 21)	(0.02-0.06, n=7)
Retention Pond	Inflow	44.5	0.68	1.71	1.18	60.0	0.43	0.27	0.23	60.0
punomenode)	MOTTIT	(24.0-88.3, n= 40)	(59.3-127.5, n= 9)	(1.07-2.36, n= 19)	(0.77-1.42, n= 28)	(0.04-0.15, n= 23)	(0.32-0.69, n= 15)	(0.11-0.55, n= 24)	(0.14-0.39, n= 38)	(0.07-0.21, n= 26)
(auoveground	Outflow	12.1	151.3	1.31	0.99	0.07	0.19	0.05	0.11	0.05
wer polita)	Outrow	(7.9-19.7, n= 40)	(70.8-182.0, n= 9)	(1.01-1.54, n= 19)	(0.76-1.29, n= 30)	(0.04-0.17, n= 24)	(0.13-0.26, n= 15)	(0.02-0.20, n= 24)	(0.07-0.19, n= 40)	(0.02-0.08, n= 27)
	Inflow	39.6	NA	1.54	1.10	0.10	0.32	0.46	0.12	0.04
Watland Bacin	MOTTH	(24.0-56.8, n= 14)		(1.07-2.16, n= 6)	(0.77-1.30, n= 4)	(0.04-0.13, n= 8)	(0.32-0.44, n= 5)	(0.11-0.63, n= 7)	(0.14-0.27, n= 11)	(0.07-0.13, n= 5)
	Outflow	12.0	NC	1.16	1.00	0.06	0.12	0.17	0.08	0.06
	Autom	(8.5-17.5, n= 16)		(0.98-1.39, n= 6)	(0.90-1.14, n= 8)	(0.04-0.10, n= 8)	(0.10-0.16, n= 7)	(0.05-0.34, n= 7)	(0.05-0.14, n= 13)	(0.02-0.25, n=7)
	Inflow	23.5	NA	NC	2.40	NC	NC	0.59	0.12	NC
Permeable	MOTTIN	(16.0-45.3, n = 5)			(1.80-3.30, n = 3)			(0.27-0.80, n = 5)	(0.10-0.13, n = 5)	
Pavement**	Outflow	29.1	NA	NC	1.05	NC	NC	1.24	0.13	NC
	MOTINO	(16.3-34.0, n = 7)			(0.90-1.33, n = 7)			(1.21-1.39, n = 4)	(0.10-0.19, n = 5)	
*Some BMP studies	include analyses for	r both NO2/NO3	and NO3; therefor	e, these analytes	are reported separate	ly, even though resu	ilts are expected to be	comparable in stormwa	ter runoff.	
Table Notes prov	ided below part 2	2 of this table.								

							Metals (micr	ograms/liter)							
BMP Category	Sample Type	Arsenic, Diss.	Arsenic, Total	Cadmium, Diss.	Cadmium, Total	Chromium, Diss.	Chromium, Total	Copper, Diss.	Copper, Total	Lead, Diss.	Lead, Total	Nickel, Diss.	Nickel, Total	Zinc, Diss.	Zinc, Total
Bioretention	Inflow	NA	NC	NC	NC	NC	NC	NC	19.5 (15.3-35.8, n= 3)	NC	NC	NC	NC	NC	68.0 (51-68.5, n= 5)
(w/Underdrain)	Outflow	NA	NC	NC	NC	NC	NC	NC	10.0 (7.3-16.8, n= 3)	NC	NC	NC	NC	NC	8.5 (5.0-35.0, n= 5)
	Inflow	0.8 (0.5-1.2, n= 12)	1.1 (0.9-2.3, n= 12)	0.2 (0.1-0.2, n= 12)	0.4 (0.3-0.8, n= 12)	2.4 (1.1-4.5, n= 12)	4.9 (2.9-7.4, n= 13)	12.9 (6.8-17.3, n=12)	21.2 (15.0-41.0, n= 13)	0.9 (0.5-2.0, n= 12)	11.0 (6-35, n= 13)	2.9 (1.1-3.2, n= 12)	4.8 (3.4-8.4, n=12)	37.8 (12.8-70, n= 12)	100.5 (53.0-245.0, n= 13)
Olass buller	Outflow	1.2 (0.5-2.4, n= 12)	2.0 (0.7-3.0, n= 12)	0.1 (0.1-0.2, n= 12)	0.2 (0.1-0.2, n= 12)	2.3 (1.0-3.8, n= 12)	2.9 (2.0-5.5, n= 13)	7.1 (4.8-11.6, n=12)	8.3 (6.4-12.5, n= 13)	0.5 (0.5-1.3, n= 12)	3.2 (1.8-6.0, n=13)	2.1 (2.0-2.3, n= 12)	2.6 (2.2-3.2, n=12)	19.8 (10.7-24.3, n= 12)	25.5 (15.0-57.9, n= 13)
	Inflow	0.6 (0.5-2.2, n= 9)	1.7 (1.6-2.7, n= 9)	0.3 (0.1-0.4. n= 13)	0.5 (0.4-0.9, n= 14)	2.2 (1.1-3.3, n= 7)	6.1 (3.6-8.3, n= 7)	10.6 (8.1-15.0, n= 13)	33.0 (26-34, n= 13)	1.4 (0.6-6.7, n= 13)	21.6 (12.5-46.4. n= 14)	5.1 (4.5-6.6, n= 6)	8.7 (7-12.5, n= 6)	40.3 (35.3-109.0, n= 13)	149.5 (43.8-244.3. n= 15)
Grass Swale	Outflow	0.6 (0.6-1.2, n= 8)	1.2 (0.9-1.7, n= 8)	0.2 (0.1-0.2, n= 12)	0.3 (0.2-0.4, n= 13)	1.1 (1.0-3.0, n= 6)	3.5 (1.7-5.0, n= 6)	8.6 (5.5-9.7, n= 13)	14.0 (6.7-18.5, n= 17)	0.5-4.1, n= 13)	10.5 (1.7-12.0, n= 18)	2.0 (2.0-2.3, n= 5)	4.0 (3.1-4.5, n=5)	22.6 (20.1-33.2, n= 13)	55.0 (20.6-65.4, n= 19)
Detention Basin	Inflow	1.1 (0.9-1.2 n= 5)	2.1 (13-2.6 n= 6)	0.3	0.6 (03-12 n= 11)	2.6 0.3 2 n= 3)	5.6 (50-65 n= 6)	5.8 0 6-11 8 n= 8)	10.0 (48-33.5 n= 11)	1.0 (0 5-1 4 n= 8)	10.0 (15-410 n= 11)	2.9 (19-39 n=4)	6.3 (5-9.4 n= 5)	16.4 (61-53.5 n= 8)	125.0 (215-2253 m= 11)
(aboveground extended det.)	Outflow	1.2 (0.9-1.2, n= 5)	1.7 (1.1-1.9, n= 6)	0.3 (0.2-0.4, n=9)	0.4 (0.2-0.6, n= 12)	1.9 (1.7-3.0, n= 4)	2.9 (1.9-3.8, n= 6)	9.0 (3.0-13.0, n= 9)	11.0 (6.2-20.1, n= 12)	1.0 (0.5-1.3, n= 9)	9.5 (1.3-18.6, n= 12)	3.1 (2.0-3.2, n= 5)	4.3 (3.2-5.4, n= 6)	19.0 (7.8-54.0, n= 9)	48.5 (19.1-94.0, n= 13)
Media Filters	Inflow	0.7	1.1 @6-1.6 n- 13)	0.2	0.4	1.0	2.1	6.2 6.474 n- 131	13.5	1.1	9.0	2.0	3.9 13-48 n-13)	42.7 28 5.70 2 m- 14)	86.0 (51 8-1060 19)
(various types)	Outflow	0.7 (0.6-1.1, n= 12)	1.1 (0.7-1.6, n= 12)	0.2 (0.2-0.2, n= 13)	0.2 (0.1-0.7, n= 17)	1.0 (1.0-1.0, n= 13)	(1.0-1.9, n= 13)	5.8 (3.1-8.3, n= 13)	7.3 (4.3-9.6, n= 18)	1.0 (1.0-1.0, n= 13)	1.6 (1.0-4.4, n=17)	2.0 (2.0-2.6, n= 13)	2.9 (2.0-3.9, n=13)	(6.7-49.0, n= 13)	20.0 (8.6-35.0, n= 19)
Retention Pond	Inflow	NC	1.0 (10.14 n= 3)	0.2	1.0 (03-2 6 n= 20)	5.9 (16-100 n= 4)	5.0 (3.0-7.4 n= 12)	7.0 (60.95 n=7)	6.3 (43-10.6 n= 26)	2.0 (10-510 n= 11)	7.6	10.0	6.5 (3 6.9 n= 8)	30.0 (15 5.42 6 n= 8)	51.8 (43.9-78.1 n= 32)
(aboveground wet pond)	Outflow	NC	(0.8-1.0, n= 3)	0.2 (0.2-0.4, n=3)	0.4 (0.2-2.5, n= 20)	5.5 (1.0-10.0, n= 4)	2.2 (1.4-5.3, n= 12)	5.0 (4.7-5.8, n=7)	5.4 (3.0-6.2, n= 26)	1.2 (1.0-4.9, n= 12)	4.7 (1.6-10.0, n= 33)	10.0 (7.2-10.0, n= 3)	2.5 (2.0-5.5, n= 9)	12.5 (9.4-28.6, n= 8)	26.0 (12.0-37.0, n= 33)
	Inflow	NA	NA	NC	0.3	NA	NA	NC	10.5 (4 3-15 0 n - 4)	NC	16.0 40.33 8 n - 40	NA	NA	NC	51.0
Wetland Basin	Outflow	NA	NA	0.5	0.3	NA	NA	5.0 (50-57 n=3)	4.5 (33.50 n=6)	1.0	1.0	NA	NA	11.0	15.0 (50.28.9 n - 9)
Permeable	Inflow	NA	NC	NC	NA	NC	NC	5.0	7.0	0.1	2.5 (13-15.1 n - 3)	NC	NC	25.0	50.0 50.0
Pavement**	Outflow	NA	NC	NC	0.3 (0.3-0.4, n =3)	NC	NC	6.2 (4.5-6.4, n = 4)	9.0 (3.0-14.7, n = 5)	0.3 (0.04-0.5, n = 4)	2.5 (1.3-9.5, n = 7)	NC	NC	14.6 13.5-16.0, n = 4)	22.0 (20.0-31.6, n = 7)
Table Key															
Sample Type	Analyte	Description													
Inflow	52.3	= Median inflo	w value		NA = Not availa	able; studies con	taining 3 or more	e storms not avai	lable.						
	(50-63.3, n= 14)	= Interquartile 1	range, sample siz	je.	NC = Not calcul	lated because fev	ver than 3 BMP	studies for this c	ategory.						
Outflow	22.3	= Median outfl	ow value		Interquartile Rai	nge = 25 th perce	ntile to 75th per	centile values, ca	liculated in Excel	, which uses line	ar interpolation to	calculate percer	titles. For small	sample sizes (par	icularly n<5),
Table Notes:	(15-28.3, n= 14)	= Interquartile	range, sample si	e	interquartile val.	ues may vary de	pending on statis	stical package use	.pc						
**Permeable pavem	ent data should be i	used with cautio	n due to limited	numbers of BMF	2 studies and sm	all numbers of st	orm events typic	ally monitored a	t these sites. "Inf	low" values are t	ypically outflows	monitored at a r	eference conven	iional paving site.	
Descriptive statistics analysis objectives, J Analysis based on A	s calculated by wei researchers may als ugust 2010 BMP L	ghting each BM. so choose to use Jatabase, which	P study equally. a storm-weighte contains substan	Each BMP stud d analysis appros tial changes relat	y is represented l ach, a unit treatm tive to the 2008 I	by the median ar tent process-base BMP Database.	talyte value repo ed grouping of si Multiple BMPs	rted for all storm tudies, or other s have been recate	is monitored at ea creening based or gorized into new	ch BMP (i.e., "n 1 design paramet BMP categories	" = number of BN ers and site-specil ; therefore, the 20	4P studies, as op 5c characteristics 08 and 2010 dat	posed to number a analysis are no	of storm events). t directly compara	Depending on the ble for several
BMP types. This table contains c	lescriptive statistics	s only. Values p	resented in this t	able should not l	be used to draw c	conclusions relat	ed to statistically	y significant diffe	srences in perforn	nance for BMP c	ategories. (Hypot	hesis testing for	BMP Categories	is provided separ	ately in other
BMP Database sumi	maries available at	www.bmpdatab	ase.org.)												
These descriptive st. Weighted" (all storn result in some differ Values below detecti	atistics are based o. ns for all BMPs inc ences between this ion limits replaced	n different statis sluded in statistic table and other J with 1/2 of deter	tical measures tl. cal calculations) published summ	an those used in approach is used aries.	the 2008 BMP I, as well as whet	Database tabular her the median o	summary. Be av ar another measu	ware that results a re of central tend	will vary dependi lency is used. Se	ng on whether a veral BMP Datał	"BMP Weighted" ase publications	(one median or in 2010 have foc	average value re used on the storr	presents each BM n-weighted appro	IP) or "Storm tch, which may
V diluce Ucio w univer	sound or summing inor	MILL 1/2 01 000	CUON MARY												